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 13 

Abstract 14 

The global monsoon region with the summer precipitation regime and the 15 

Mediterranean climate region with the winter precipitation regime showed opposite 16 

dry/wet evolution since the Last Glacial Maximum (LGM). The remarkable difference 17 

in summer precipitation regime and winter precipitation regime reveal the seasonal 18 

signals of precipitation in multi-time scale climate change. Most studies revealed that 19 

the dry/wet status with the summer precipitation regime in Eastern and Central Asia 20 

(EA and CA) contradicted those with the winter precipitation regime in CA. Based on 21 

the comprehensive study of modern observation datasets, model outputs of eight 22 
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climate models from the Paleoclimate Model Intercomparison Project phase 3 (PMIP3) 23 

and proxy records from EA and CA, here we show that seasonal signals of precipitation 24 

derived from the simultaneity of rain and heat periods could govern the difference and 25 

linkage in dry/wet status from EA and CA. EOF analysis results of mean annual 26 

precipitation uncover different precipitation regimes in EA and CA. However, the 27 

similarity between EA and the east of CA, indicated by EOF results of summer and 28 

winter precipitation, suggested seasonal signals of precipitation are the primary factor 29 

causing the linkage in dry/wet status at short-term timescales. In particular, summer and 30 

winter precipitation in EA and CA is associated with the Asian monsoon, westerlies, 31 

ENSO, NAO, and PDO. At long-term timescales, the compilation of 42 proxy records 32 

since the LGM in EA and CA reveals parallel dry/wet changes in EA and the east of CA 33 

as well, attributing to seasonal signals triggered by the insolation in different seasons. 34 

PMIP3 multi-model simulation between the LGM and Mid-Holocene (MH) in summer 35 

and winter visually was conducted to analyze paleoclimate mechanisms of difference 36 

and linkage in dry/wet status from EA and CA. Results show that summer insolation 37 

influences the meridional temperature gradient and sea level pressure in the summer, 38 

changing the intensity of the westerly winds and summer monsoon and further 39 

controlling the summer precipitation in EA and the east of CA. Meanwhile, winter 40 

insolation contributes to the general warming in EA and the core region of CA, and in 41 

turn results in lower relative humidity, which ultimately increases winter precipitation 42 

during the LGM. Overall, we suggest, in addition to the traditional difference caused 43 

by different precipitation regimes, that dry/wet status in EA and CA universally have 44 
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inter-regional connections affected by seasonal signals of precipitation at multi-time 45 

scales. 46 

 47 
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 51 

1 Introduction 52 

As typical midlatitude climatic regions, Eastern and Central Asia (EA and CA) are 53 

commonly featured with vigorous circulations and are dominated by two atmospheric 54 

systems, namely midlatitude westerlies and Asian monsoon (Li, 1990; Zhang and Lin, 55 

1992; Chen et al., 2008; Nagashima et al., 2011). These two regions are generally 56 

characterized by opposite climate and environment changes, embodied in water 57 

resources, vegetation cover and ecosystems, which gives rise to their different response 58 

to climate change (Sorg et al., 2012; Zhang and Feng, 2018). CA, where precipitation 59 

is scarce throughout the year, is the largest arid region in the mid-latitudes dominated 60 

by westerlies (Chen et al., 2009; Huang et al., 2015a). On the contrary, affected by the 61 

Asian summer monsoon that carries water vapor from the Ocean, the monsoon-62 

dominated EA has more precipitation (Wang et al., 2017). Therefore, exploring 63 

spatiotemporal climate and environment changes in EA and CA has attracted much 64 

research interest. 65 

Over the past few years, there have been many comparative studies for dry/wet 66 
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changes at multi-time scales from EA and CA. Early works suggested that the climate 67 

change mode of ‘cold-wet’ or ‘warm-dry’ occurred in northwestern China during the 68 

last glacial/interglacial cycle, which is different from the ‘cold-dry’ or ‘warm-wet’ 69 

modes of the monsoon climate (Li, 1990; Han and Qu, 1992; Han et al., 1993). Based 70 

on the integration of paleoclimate records, modern meteorological observation data and 71 

paleoclimate simulations, Chen et al. (2008, 2009, 2019) revealed the ‘westerlies-72 

dominated climatic regime’ in arid CA from millennium to interdecadal timescales, 73 

which is out-of-phase or anti-phased with the dry/wet status in the monsoon-dominated 74 

regions. However, the paleoclimate records in part regions of CA provided 75 

asynchronous climate evolution history, in contradiction with the dry/wet changes 76 

caused by the westerlies (An et al., 2006; Zhao et al., 2015; Wang et al., 2018). The 77 

latest studies proposed that the persistent weakening of the East Asian summer 78 

monsoon since 1958, causing an increasing contribution of the monsoonal water vapor 79 

transport, thereby enhancing summer precipitation in arid CA (Chen et al., 2021a; Chen 80 

et al., 2021b). Therefore, further research is needed to explain dry/wet changes in 81 

different regions and explore the difference and linkage in climate change modes from 82 

EA and CA at multi-time scales. 83 

The seasonal signals of precipitation derived from the simultaneity of rain and heat 84 

periods, behaving as that the summer half-year at short-term timescales and warm 85 

period at long-term timescales has more precipitation than the winter half-year and cold 86 

period respectively, is an important phenomenon in climate change in EA and CA at the 87 

multi-time scale. This study aims to focus on the transitional zone in the arid and semi-88 
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arid region of eastern CA where the westerlies and the monsoon interact and have the 89 

summer precipitation regime the same as the monsoon-dominated EA. Utilizing 90 

modern observations, paleoclimate proxies, and model simulations, we conducted a 91 

comprehensive analysis for dry/wet status in EA and CA at multi-time scales based on 92 

seasonal signals of precipitation.  93 

 94 

2 Materials and methods 95 

2.1 Study area 96 

CA is the largest arid and semi-arid areas in the mid-latitude hinterland of the 97 

Eurasian continent, extending from the Caspian Sea in the west to the modern Asian 98 

summer monsoon limit in the east, comprising the central Asian countries, NW China, 99 

and southern Mongolian Plateau (Fig. 1). Considering that the strength and trajectory 100 

of monsoon circulation is a major control on moisture in EA, we viewed the monsoon 101 

China in the east and south of the modern Asian summer monsoon limit as EA (Fig. 1). 102 

We calculated the precipitation difference between the summer (April, May, June, July, 103 

August, and September) and winter (January, February, March, October, November, 104 

and December) half year over 1971-2020, and then defined the region greater than 0 105 

mm as the simultaneous region of rain and heat periods (Fig. 1, gray slash). Eastern CA 106 

belongs to the simultaneous region of rain and heat periods. The seasonality perspective 107 

implies that different precipitation regimes could affect the difference and linkage in 108 

climate change modes from EA and CA at the multi-time scale. Taking seasonal signals 109 

as the dividing criteria, the core region of CA is characterized by a wet cold-season 110 
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climate, whereas EA and eastern CA is characterized by a wet warm-season climate 111 

(Fig. 1).  112 

 113 

Figure. 1 Overview map showing the paleoclimate record sites selected in this study from EA and CA, the difference 114 

between summer and winter precipitation over 1965-2014 (shade), and the dominant circulation systems, including 115 

the westerlies, Asian winter monsoon and East Asian summer monsoon. The modern Asian summer monsoon limit 116 

(red solid line) is summarized by Chen et al. (2008, 2019). The gray slash represents the simultaneous region of the 117 

rain and heat periods. 118 

 119 

2.2 Modern observation and analytical methods 120 

The monthly high-resolution (0.5°×0.5°) land precipitation data (referred to as 121 

CRU TS4.06) are selected from a Climatic Research Unit (CRU) updated gridded 122 

climate dataset in the University of East Anglia (van der Schrier et al., 2013; Harris et 123 

al., 2014; Barichivich et al., 2021). The CRU monthly climate archives obtain from the 124 

auspices of the World Meteorological Organization (WMO) in league with the US 125 

National Oceanographic and Atmospheric Administration (NOAA, via its National 126 

Climatic Data Center, NCDC). Global Reanalysis 1 dataset including monthly mean 127 

geopotential height, zonal wind, and meridional wind is collected from the National 128 

Centers for Environmental Prediction/National Center for Atmospheric Research 129 
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(NCEP/NCAR) (Kalnay et al., 1996). The reanalysis datasets have a horizontal 130 

resolution of 2.5° in latitude and longitude and a vertical resolution of 17 pressure levels 131 

from 1000 to 10 hPa. The high-resolution monthly averaged data high resolution for 132 

the vertical integral water vapor from the European Centre for Medium-Range Weather 133 

Forecasts (ECMWF) reanalysis v5 (ERA5), intending to be used as a meteorological 134 

forcing dataset for land surface and hydrological models, is used in this study. This 135 

dataset is from 1979 to the present with a spatial resolution of 0.25° in latitude and 136 

longitude and a single level integrated from the surface to the top of the atmosphere 137 

(Hersbach et al., 2020).  138 

We used the National Centers for Environmental Information (NCEI) Pacific 139 

Decadal Oscillation (PDO) index based on NOAA’s extended reconstruction of SSTs 140 

(ERSST Version 5) to analyze long-lived El Niño-like pattern of Pacific climate 141 

variability (Zhang et al. 1997; Mantua and Hare, 2002). The data can be obtained at 142 

https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.pdo.dat. The Niño 3.4 143 

index is the most commonly used index to define El Niño and La Niña events. We 144 

selected the Niño 3.4 of area-averaged SST from 5°S-5°N and 170-120°W using the 145 

HadISST1 dataset (Rayner et al., 2003). The data can be obtained at 146 

https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/. Positive values of the North 147 

Atlantic Oscillation (NAO) index are typically associated with stronger midlatitude 148 

westerlies and increased water vapor content from the North Atlantic. We used the 149 

Hurrell NAO index (station-based) to investigate the impact factor of midlatitude 150 

westerlies (Hurrell, 1995; Hurrell and Deser, 2009). The data can be obtained at 151 
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https://climatedataguide.ucar.edu/sites/default/files/2022-10/nao_station_monthly.txt.  152 

Empirical orthogonal function (EOF) is a powerful method for dimensionality 153 

reduction and pattern extraction. EOF can decompose multidimensional climate data 154 

from different locations into spatial (EOF modes) and temporal functions (principal 155 

components). Therefore, to investigate the spatiotemporal variations of precipitation at 156 

the interannual timescale over EA and CA, the EOF analysis was applied to the CRU 157 

TS4.06 gridded precipitation data and ERA5 vertical integral water vapor. We focused 158 

on the first two leading modes that objectively account for the majority of dry/wet status 159 

in EA and CA (Lorenz, 1956). 160 

 161 

2.3 Calculation of Monsoon and westerly wind index 162 

The East Asian summer monsoon index (EASMI) is defined as the 850 hPa 163 

average summer meridional wind speed from June to August over (27°N~37°N, 164 

110°E~120°E) encompassing the East Asian summer monsoon domain (Liu et al., 165 

2014). The equation is as follows: 166 

EASMI = V850
⃗⃗ ⃗⃗ ⃗⃗  ⃗(27°~37°N, 110°~120°E) 167 

The westerly wind index (WWI) is defined as the zonal difference of the 500 hPa 168 

averaged geopotential height over (35°N~50°N, 70°E~110°E) (Li et al., 2008). The 169 

equation is as follows: 170 

WWI = H35°
̅̅ ̅̅ ̅ - H50°

̅̅ ̅̅ ̅ = 
1

17
[ ∑ H17

γ=1 (γ, 35°N) - ∑ H17
γ=1 (γ, 50°N)] 171 

where H is the 500 hPa average height geopotential, γ is the number of longitudes 172 

taken along the latitude circle with a spacing of 2.5°. 173 
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The East Asian winter monsoon index (EAWMI) is defined as the difference 174 

between the 300 hPa averaged zonal wind speed from December to February over 175 

(27.5°~37.5°N, 110°~170°E) and (50°~60°N, 80°~140°E) (Jhun and Lee, 2004). The 176 

equation is as follows: 177 

EAWMI = U300
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (27.5°~37.5°N, 110°~170°E)-U300

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (50°~60°N, 80°~140°E) 178 

The calculation of EASMI, WWI, and EAWMI all rely on the NCEP Reanalysis 1 179 

dataset. 180 

 181 

2.4 Regional paleoclimatic proxy data 182 

Here we compiled various paleoclimate records to reconstruct long-term climate 183 

variability and primarily paid close attention to paleo-precipitation and moisture 184 

changes since the LGM. We set three criteria to collect all the published proxy records 185 

from EA and CA in our study. Firstly, the records should be located primarily in the 186 

intersection encompassing the simultaneous region of rain and heat periods in EA and 187 

CA, which is in favor of investigating the difference and linkage in climate change 188 

modes from EA and CA. Accordingly, some typical records climatologically influenced 189 

by midlatitude westerlies in cores of EA and CA were selected for comparative analysis. 190 

Secondly, the proxies should be clearly indicative of changes in effective moisture or 191 

precipitation which have been confirmed by the original investigators. Third, the record 192 

length should cover the most period since LGM without documented depositional 193 

hiatuses. Fourth, the fluctuation and variation of proxy records should be predominantly 194 

forced by climate change, rather than human activities (Manoj et al., 2020; Chen et al., 195 
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2021c, 2022). Following the above criteria, a total of 42 proxy records from lakes, peats, 196 

loess, and stalagmites since the LGM were compiled for EA and CA (Fig. 1), enabling 197 

us to comprehensively review the LGM moisture evolution of the region. In light of 198 

seasonal signals of precipitation, 35 records are from the summer precipitation region, 199 

and seven records are from the winter precipitation region. Detailed information about 200 

these selected proxy records is presented in Table 1.  201 

Table 1. Paleoclimate records selected in this study. 202 
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e 
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t 
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n 

Evalu

ation 

(m 

a.s.l) 

Precip

itation 

regime 

Dating materials Dati

ng 
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hod 

Time 

period 

(cal ka 

BP) 

Proxy Proxy 

indication 

Refe

renc

es 

1 Caspi

an Sea 

Lak

e 

41

.9
3 

50

.6
7 

-28 winter Ostracods 14C 12.4-

2.4 

Pollen Moisture Lero

y et 
al. 

(201

4) 

2 YE 
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n 

Loe

ss 
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.6

0 
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.4

3 
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al. 
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0) 
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leot
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m 
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.4

0 
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.3

4 
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Th 
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al. 
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6) 
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n 

Loe

ss 
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7 
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1 

1000 winter Bulk organic 
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14C 46-0 δ13C Moisture Ran 
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Fen

g 

(201

4) 
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n 

Loe

ss 
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.6

1 
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.0

1 
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MS 
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moisture 

Li et 

al. 
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1) 
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ul 

Lak

e 
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.0

2 
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.5

3 

3915 winter plant remains, 

bulk sediments, 
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size, δ13Ccarb, 

δ18O 
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8 
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e 
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0 
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0 
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3.6 
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et al. 
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al. 
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7 

ZKT 
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n 
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ss 
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3 
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0 
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2
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8 

2168 summ

er 

Cellulose 14C 9.5-0 Pollen, δ18O, 

δ13C 

Moisture Xu 

et al. 

(201

https://doi.org/10.5194/cp-2023-71
Preprint. Discussion started: 15 September 2023
c© Author(s) 2023. CC BY 4.0 License.



12 

 

9) 

2

5 

Lake 

Wulu

ngu 

Lak

e 

47

.2

0 

87

.2

9 

479 summ

er 

Bulk organic 

matter 

14C 9.5-0 Pollen, δ13C, 

grain-size 

Moisture Liu 

et al. 

(200

8) 
2

6 

ZL 

sectio

n 

Loe

ss 

43

.5

0 

87

.3

3 

1756 summ

er 

K-feldspar OSL 10.8-0 MS Moisture Che

n et 

al. 

(201

6); 

Gao 

et al. 
(201

9) 

2

7 

Tuole

haite 

peat 

Pea

t 

48

.4

4 

87

.5

4 

1700 summ

er 

Plant residuals 14C 10.6-0 Pollen Moisture Zha

ng et 

al. 

(202

0) 

2
8 

Chaiw
opu 

peat 

Pea
t 

43
.3

5 

88
.3

0 

800 summ
er 

Plant, Bulk 
sediments 

14C 11.5-0 Pollen Moisture Yan
g et 

al. 

(202

1) 

2

9 

Hoton 

Nurr 

Lak

e 

48

.6

7 

88

.3

0 

2083 summ

er 

Bulk sediments 14C 11.5-0 Pollen Annual 

precipitati

on 

Rud

aya 

et al. 
(200

9) 

3

0 

Lake 

Akkol 

Lak

e 

50

.3

8 

89

.4

2 

2204 summ

er 

Bulk sediments 14C 10-0 Pollen Vegetatio

n change 

Blya

khar

chu

k et 

al. 

(200
7) 

3

1 

Achit 

Nuur 

Lak

e 

49

.4

2 

90

.5

2 

1444 summ

er 

Bulk sediments, 

root, mollusk 

14C 22.6-0 δ18O Annual 

precipitati

on 

Sun 

et al. 

(201

3) 

3

2 

Lake 

Lup-

Nur 

Lak

e 

40

.0

0 

91

.0

0 

780 summ

er 

Quartz OSL 9-0 Soluble salt 

content, 

grain-size, 
pollen, 

ostracod 

Moisture Liu 

et al. 

(201
6) 

3

3 

Lake 

Balik

un 

Lak

e 

43

.6

7 

92

.8

0 

1575 summ

er 

Bulk organic 

matter, plant 

macrofossils, 

pollen; 

14C 29.1-0 Pollen Moisture Tao 

et al. 

(201

0); 

An 
et al. 

(201

2); 

Zha

o et 

al. 

(201

5) 
3

4 

Bayan 

Nurr 

Lak

e 

49

.9

8 

93

.9

5 

932 summ

er 

Bulk sediments 14C 15-0 Pollen Annual 

precipitati

on 

Tian 

et al. 

(201

4) 

3

5 

Qingh

ai 

Lake 

Lak

e 

37

.0

0 

10

0.

00 

3200 summ

er 

Bulk organic 

matter 

14C 18-0 δ18O summer 

monsoon 

precipitati

on 

She

n et 

al. 

(200
5); 

Liu 

et al. 

(200

7) 

3

6 

Qilian 

sectio
n 

Loe

ss 

38

.1
6 

10

0.
27 

2810 summ

er 

Bulk organic 

matter 

14C 22-0 δ18O, δ13C Effective 

moisture 

Li et 

al. 
(202

0b) 

3

7 

Lake 

Ulaan 

Lak

e 

44

.5

3 

10

3.

63 

1024 summ

er 

Bull samples, 

quartz 

14C, 

OSL 

17-0 TOC Moisture Lee 

et al. 

(201

1, 

201

https://doi.org/10.5194/cp-2023-71
Preprint. Discussion started: 15 September 2023
c© Author(s) 2023. CC BY 4.0 License.



13 

 

3) 

3

8 

Dong

ge 

Cave 

Spe

leot

he

m 

25

.2

8 

10

8.

08 

680 summ

er 

Carbonate U-

Th 

16-0 δ18O summer 

monsoon 

precipitati

on 

Dyk

oski 

et al. 

(200
5) 

3

9 

Jiuxia

n 

Cave 

Spe

leot

he

m 

33

.5

66

7 

10

9.

1 

1495 summ

er 

Carbonate U-

Th 

19-0 δ18O summer 

monsoon 

precipitati

on 

Cai 

et al. 

(201

0) 

4

0 

Lianh

ua 
Cave 

Spe

leot
he

m 

29

.4
83 

10

9.
53

3 

455 summ

er 

Carbonate U-

Th 

12.5-0 δ18O summer 

monsoon 
strength 

Zha

ng et 
al. 

(201

3) 

4

1 

Sanba

o 

Cave 

Spe

leot

he

m 

31

.6

67 

11

0.

43

3 

1900 summ

er 

Carbonate U-

Th 

13-0 δ18O Summer 

rainfall 

Don

g et 

al. 

(200

9) 
4

2 

Hulu 

Cave 

Spe

leot

he

m 

32

.5

0 

11

9.

17 

90 summ

er 

Carbonate U-

Th 

Nov-75 δ18O summer 

monsoon 

precipitati

on 

Wan

g et 

al. 

(200

1) 

203 

https://doi.org/10.5194/cp-2023-71
Preprint. Discussion started: 15 September 2023
c© Author(s) 2023. CC BY 4.0 License.



14 

 

2.5 Paleoclimatic simulations 204 

The Paleoclimate Modeling Intercomparison Project (PMIP) was launched to 205 

coordinate and encourage the systematic study of General Circulation Models (GCMs) 206 

and to understand the mechanisms of climate change and the role of climate feedback 207 

(Joussaume et al., 1999) (Table 2). Eight coupled GCMs covering the LGM or MH from 208 

the PMIP3 database were selected to analyze the mechanisms of climate change in this 209 

study (Table 3), including bcc-csm1-1, CNRM-CM5, CCSM4, CSIRO-Mk3-6-0, 210 

GISS-E2-R, MIROC-ESM, FGOALS-s2, and MRI-CGCM3. The output data of the 211 

PMIP3 in the LGM and MH are available at htQTPs://esgf-node.llnl.gov/search/esgf-212 

llnl/. By chiefly interpolating various climate variables on the common 1°×1° grid and 213 

then sorting the values of model simulations from minimum to maximum, we extracted 214 

the median value of all PMIP3 models used in this paper to evaluate the PMIP3 model 215 

simulations and acquire the scientific model simulation value. 216 

Table 2. Boundary conditions and forcing for PMIP3-CMIP5 models at the LGM and MH. 217 

Period Eccentricity 
Obliquity 

(°) 

Longitude of 

perihelion (°) 

CO2 

(ppm) 

CH4 

(ppb) 

N2O 

(ppb) 
Ice sheet 

Vegetation 

LGM 0.018994 22.949 114.425 185 350 200 Peltier (2004), 

21 ka 

Present 

day 

MH 0.018682 24.105 0.87 280 650 270 Peltier (2004), 0 

ka 

Present 

day 

 218 

Table 3. Basic information about climate models from PMIP3-CMIP5 used in this study. 219 

Model Institute Resolutions Variables* References 

bcc-csm1-1 
Beijing Climate Center, China 

Meteorological Administration, China 
64×128 (17) 

ua, va, zg, 

hus, psl, pr, 

tas 

Randall et al. 

(2007) 

CNRM-CM5 
Centre National de Recherches 

Météorologiques, France 
128×256 (17) 

ua, va, zg, 

hus, psl, pr, 

tas 

Voldoire et al. 

(2013) 
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CCSM4 
National Center for Atmospheric Research, 

USA 
288×192 (17) 

ua, va, zg, 

hus, psl, pr, 

tas 

Gent et al. 

(2011) 

CSIRO-Mk3-6-0 

Australian Commonwealth Scientific and 

Industrial Research Organization Marine and 

Atmospheric Research in collaboration with 

the Queensland Climate Change Centre of 

Excellence, Australia 

96×192 (18) 

ua, va, zg, 

hus, psl, pr, 

tas 

Rotstayn et al. 

(2010) 

GISS-E2-R 
NASA Goddard Institute for Space Studies, 

USA 
144×90 (17) 

ua, va, zg, 

hus, psl, pr, 

tas 

Schmidt et al. 

(2014) 

MIROC-ESM 
Japan Agency for Marine-Earth Science and 

Technology, Japan 
128×64 (35) 

ua, va, zg, 

hus, psl, pr, 

tas 

Watanabe et al. 

(2011) 

FGOALS-s2 LASG-CEES. China 108×128 (17) 

ua, va, zg, 

hus, psl, pr, 

tas 

Briegleb et a1. 

(2004) 

MRI-CGCM3 Meteorological Research Institute, Japan 320×160 (23) 

ua, va, zg, 

hus, psl, pr, 

tas 

Yukimoto et al. 

(2012) 

*: ua means eastward_wind; va means northward wind; zg geopotential Height; hus near-surface relative humidity; psl means sea surface 220 

pressure; pr means precipitation; tas means near-surface temperature 221 

 222 

3. Results 223 

3.1 Seasonal signals at short-term timescales 224 

To obtain the spatial distribution characteristics of the precipitation anomalies in 225 

EA and CA under the context of seasonal signals, we conducted an EOF analysis on the 226 

precipitation standardized anomaly field over 1971-2020. Figure 2a-d shows the spatial 227 

distribution and time series of EOF decomposition of mean annual precipitation. The 228 

variance contribution rate of the first mode is 10.29%, showing an obvious dipole mode. 229 

The center of negative values is in the core region of CA mainly belonging to the winter 230 

precipitation regime, while the positive values are in the south and north of EA located 231 

in summer precipitation regions (Fig. 2a). This opposite distribution indicates that the 232 

mean annual precipitation in EA and CA have a see-saw pattern. Additionally, the first 233 
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mode exhibits interdecadal and interannual changes according to the PC1 (Fig. 2b). The 234 

variance contribution rate of the second mode is 8.79%, indicating zonal dipole 235 

distribution characteristics (Fig. 2c). The center of positive values is in the north of EA, 236 

and the center of negative values is in the north of CA, also displaying the spatial 237 

diversity of mean annual precipitation in EA and CA (Fig. 2c). 238 

 239 

Figure. 2 The EOF modes and corresponding time series of annual mean precipitation in EA and CA over 1971-240 

2020. 241 

In order to further explore the contribution of seasonal signals of precipitation to 242 

dry/wet status in EA and CA, we conducted the EOF analysis on the seasonal 243 

precipitation in spring, summer, autumn, and winter. The variance contribution rate of 244 

the first mode in precipitation of four seasons is shown in Fig. 3. The first mode of 245 

spring and autumn precipitation does not show obvious distribution characteristics, and 246 

the contribution rate is relatively uniform, indicating that spring and autumn 247 

precipitation have no special precipitation contribution to EA and CA (Fig. a and c). In 248 

summer precipitation, the centers of positive values are mainly distributed in the north 249 

of EA, while the negative values are mainly distributed in CA and south of EA (Fig. 250 
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3b). This spatial distribution indicates that summer precipitation mainly affects the 251 

dry/wet status in northern EA and the east of CA belonging to the simultaneous region 252 

of rain and heat periods, which is in contrast to the core region of CA. In winter 253 

precipitation, the center of the positive value is located in the CA and north of EA, 254 

showing the significant contribution of winter precipitation to CA (Fig. 3d). It is worth 255 

noting that a certain degree of similarities exists in both summer and winter 256 

precipitation of EA and CA, indicating the impact of seasonal precipitation on the 257 

linkage of dry/wet status in EA and CA at short-term timescales. 258 

 259 

Figure. 3 The first EOF modes of precipitation in spring (March, April, and May, MAM) (a), summer (June, July, 260 

and August, JJA) (b), autumn (September, October, and November, SON) (c), and winter (December, January, and 261 

February, DJF) (d) in EA and CA over 1971-2020. 262 

Existing studies emphasized the role of water vapor sources in affecting interannual 263 

to interdecadal variability of precipitation (Chen and Huang, 2012; Huang et al., 2015a; 264 

Peng and Zhou, 2017; Wei et al., 2017). Therefore, by analyzing the EOF results of 265 

water vapor content in the whole layer, this study investigates the general characteristics 266 
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of the spatial distribution of water vapor in EA and CA and discusses the influence 267 

mechanism of seasonal signals on dry/wet status in EA and CA at short-term timescales. 268 

The EOF1 of the mean annual water vapor shows that the core region of CA is 269 

dominated by positive values, while EA and eastern CA are synchronized with negative 270 

values (Fig. 4a). The same spatial distribution mode is also reflected in the EOF1 of 271 

water vapor difference between summer and winter half-year. To summarize, the water 272 

vapor in EA and CA shows a dipole out-of-phase pattern between the simultaneous 273 

region of rain and heat periods and the non-simultaneous region of rain and heat periods 274 

(Fig. 4b). This implies that the content and source of water vapor are the important 275 

reason why the dry/wet status in eastern CA is linked to that in EA by seasonal signals 276 

of precipitation. 277 
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 278 

Figure. 4 a, the EOF1 modes of annual mean integral water vapor in EA and CA over 1979-2018; b, the EOF1 modes 279 

of integral water vapor difference between summer and winter in EA and CA over 1979-2018. 280 

 281 

3.2 Spatiotemporal variation of dry/wet status and seasonal signals at long-term 282 

timescales 283 

In the last decade, many paleoclimate records with a relatively high resolution, 284 

reliable chronology, and unambiguous proxies have been published to discuss the long-285 

term timescale climate evolution in EA and CA. Forty-two moisture records from 286 

individual sites are used to illustrate the spatiotemporal pattern of dry/wet status since 287 

the LGM in EA and CA (Fig. 7). During the LGM, most regions in EA and CA are in 288 

moderately dry condition (Fig. 7a). However, moderately wet and wet conditions partly 289 

exist in the east of CA. According to the model simulation, Yu et al. (2000) concluded 290 
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that the low temperature in the cold period causes decreasing evaporation, with the 291 

enhanced westerlies driven by expanding land ice sheets, forming the high lake level in 292 

western China and the low lake level in eastern China during the LGM. During the early 293 

Holocene (EH), CA is dominated by a dry climate, while EA is moderately wet. At the 294 

same time, there were many records in the east of CA similar to the dry/wet status of 295 

EA. During the MH, the dry/wet status is mainly wet in the core region of CA and 296 

gradually turns into moderately wet and even dry conditions in the east of CA, while 297 

the EA remains moderately wet. By the late Holocene (LH), the EA is characterized by 298 

dry status, while CA is wet. In particular, the dry condition during the LGM and the wet 299 

climate during the EH and MH also reflect another meaning of seasonal signals derived 300 

from the simultaneity of rain and heat periods at long-term timescales, namely the “dry-301 

cold” pattern and “wet-warm” pattern. 302 

 303 

Figure. 7 Spatio-temporal characteristics of the dry/wet status from 42 records since the LGM, based on the 304 

confirmation of original investigators during the LGM, early Holocene (EH), mid Holocene (MH), and late Holocene 305 

(LH). Records with an incomplete stage are shown by a gray dot. Four summarized levels of dry/wet status: wet, 306 

moderately wet, moderately dry, and dry. 307 

In detail, we further performed a comparative analysis of time series of typically 308 
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proxy record in EA and CA (Fig. 8). The reconstructed precipitation covering the past 309 

22,600 years from Achit Nuur suggests the wet periods from 22,600 to 13,200 cal BP  310 

(Fig. 8c). Pollen record from the Caspian Sea, controlled by the westerlies, displays that 311 

the terrestrial vegetation around the Caspian Sea changed from desert/desert steppe 312 

during the last glacial to dry shrubland/forest during the Holocene, revealing the 313 

continuous wetting process since the EH and the wettest LH (Fig. 8a). Meanwhile, 314 

results of climatically-sensitive magnetic properties from the Xinjiang loess 315 

demonstrate that the relatively wet conditions are generally formed after ~6,000 cal BP, 316 

with the wettest climate occurring during the LH (Fig. 8b). However, there is still 317 

partially contradictory for dry/wet changes on long-term timescales in CA, which are 318 

different from CA but similar to EA. Herzschuh. (2006) comprehensively analyzed 75 319 

paleoclimatic records in CA and revealed that wet conditions occurred during the EH 320 

and MH, while the LGM was characterized by the dry climate (Fig. 8h), indicating the 321 

similarity with the monsoon climate represented by the speleothem δ18O records from 322 

Dongge Cave and Hulu Cave (Fig. 8d). High precipitation in the EH and MH, indicated 323 

by δ18O records of ostracod shells from Qinghai Lake, shows that the climate in Qinghai 324 

Lake since the late glacial reflects the monsoon-dominated characteristic (Fig. 8e). The 325 

climate in Ulaan Nuur is wettest during the EH, humid during the MH and dry in the 326 

LH, embodying a typical characteristic of the East Asian summer monsoon (Fig. 8f). 327 

Based on the sediment cores from Lake Karakul and Lake Issyk-Kul, the EH and MH 328 

is characterized by wetter conditions in the region, and the lake level remained low 329 

during the LGM (Fig. 8g and j). Furthermore, the regional climate in western China, 330 
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inferred from the speleothem oxygen-carbon isotope in Kesang Cave, suggests a close 331 

coupling with the Asian summer monsoon (Fig. 8i). The lake level and climate 332 

reconstructed results also conducted that the “dry-cold” pattern triggered a substantial 333 

lowering of lake level in most of arid western China, challenging the traditional view 334 

of “wet-cold” pattern and high lake levels during the LGM (Zhao et al., 2015). 335 

 336 
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Figure. 8 A comparison of proxy variability recorded in EA and CA. a Pollen record from the Caspian Sea (Leroy 337 

et al., 2014); b XARM/SIRM in the LJW10 section of the Xinjiang Loess (Chen et al., 2016); c Reconstructed MAP 338 

(mean annual precipitation) from Achit Nuur (Sun et al., 2013); d speleothem δ18O values records from Dongge 339 

Cave and Hulu Cave (Yuan et al., 2004; Wang et al., 2001); e δ18O of ostracode shells from Qinghai Lake (Liu et al., 340 

2007); f TOC (Total organic carbon) from Ulaan Nuur (Lee et al., 2013); g δ13C from Lake Karakul (Heinecke et al., 341 

2017; Mischke et al., 2017); h Mean effective moisture from monsoonal Central Asia (Herzschuh, 2006); i δ18O from 342 

Kesang Cave (Cheng et al., 2016); j δ18O from Lake Issyk-Kul (Ricketts et al., 2001); k Summer (red line) insolation 343 

at 30°N and winter (blue line) insolation at 50°N (Berger, 1978);. Blue shadows indicate the wet period of 344 

paleoclimate proxies. 345 

 346 

4. Discussion 347 

4.1 Possible dynamics of seasonal signals at short-term timescales 348 

EOF analysis of precipitation and water vapor consistently verifies that the 349 

connection between EA and the east of CA exists under the traditional differentiation 350 

between EA and the core region of CA. Considering that the east of CA is present as 351 

the summer precipitation regime. Therefore, we propose that seasonal signals of 352 

precipitation contribute to the connection between EA and the east of CA. 353 
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 354 

Figure. 5 The time series of the precipitation PC1 in summer, winter, WWI, EAWMI, and EASMI over 355 

1971-2020. 356 

Generally, atmosphere circulations have important effects on the spatial 357 

distribution and the transportation of water vapor. In order to explore the influence of 358 

the modern air-sea circulation system on the summer and winter precipitation, we 359 

analyzed the time series of the precipitation PC1, WWI, EAWMI, EASMI, NAO, PDO, 360 

and ENSO over 1971 to 2020 (Fig. 5 and 6). Comparing the winter precipitation PC1 361 

with WWI and EAWMI (Fig. 5), the weakening of the westerlies and winter monsoons 362 

is usually accompanied by an increase in winter precipitation. However, there is not a 363 
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significant relationship between PC1 of summer precipitation and EASMI. As shown 364 

in Figure. 6, summer PDO and ENSO are basically similar to winter PDO and ENSO. 365 

However, the markable discrepancy exists in the evolution of winter NAO and summer 366 

NAO. The NAO and ENSO index presents interannual timescale variation, and the 367 

PDO index has an interdecadal timescale cycle. The NAO index and the winter 368 

precipitation PC1 have a positive correlation, suggesting that the North Atlantic may 369 

have certain effects on the winter precipitation through the air-sea interaction. Positive 370 

values of the NAO index are usually accompanied by stronger midlatitude westerlies 371 

and increased water vapor content from the North Atlantic. The PDO and ENSO, 372 

however, were related to the summer precipitation PC1. The development of winter 373 

precipitation at interdecadal timescales was not connected with PDO, whereas there is 374 

a positive correlation before the 2000s between summer precipitation and PDO.  375 
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 376 

Figure. 6 The time series of the precipitation PC1 in summer, winter, and annual mean, NAO, PDO, and 377 

ENSO over 1971-2020. 378 

A majority of relevant studies stand for that precipitation variations in CA are 379 

subjected to water vapor transported by the mid-latitude westerlies, where the 380 

monsoonal water vapor source is hard to reach (Huang et al., 2015a; Guan et al., 2019). 381 

Abundant moisture is brought to CA from polar airmass, North Atlantic and the eastern 382 

Mediterranean Sea, and continues to diffuse eastward to the arid region of northwest 383 

China (Lioubimtseva, 2014). Meanwhile, several studies in recent years found that the 384 

anti-phase pattern between the East Asian summer monsoon and the westerlies causes 385 
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the seesaw phenomenon of precipitation variation in northwest China (the east of CA 386 

in this study) (Zhang et al., 2019; Wu et al., 2019). However, Chen et al. (2021a) 387 

proposed that the East Asian summer monsoon plays an important role in the 388 

interdecadal variability of summer precipitation in CA through the transportation of 389 

summer water vapor from the Indian and Pacific Oceans to eastern CA. Additionally, 390 

Huang et al. (2015b) stated that increased summer precipitation in the Tarim Basin is 391 

mainly related to the weakened Indian summer monsoon. In addition, the large-scale 392 

topography, such as the Qinghai-Tibet Plateau, causes the westerlies to flow around the 393 

plateau rather than over it, which in turn influences the local transport of water vapor 394 

and results in local precipitation changes (Xie et al., 2014). Therefore, the atmospheric 395 

circulation and topographic factors bear on the transportation and content of water 396 

vapor at short-term timescales, which makes the east of CA with summer precipitation 397 

regime different from the core region of CA, but linked to the EA. 398 

 399 

4.2 Possible dynamics of seasonal signals at long-term timescales 400 

Studying the mechanism of paleoclimate change in EA and CA during the LGM 401 

and MH, with model simulation, is of great significance for assessing future 402 

hydroclimate changes. The results of paleoclimate simulations explain the difference 403 

and linkage in the dry/wet status from EA and CA under the framework of seasonal 404 

signals at long-term timescales. During the LGM, lower summer insolation increases 405 

the meridional temperature difference and sea level pressure in the summer largely (Fig. 406 

8k; 9a and c), leading to the strengthening of the westerlies (Fig. 10a) and further 407 
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increasing precipitation in the core region of CA (Fig. 9e). Given the weakening of the 408 

LGM summer monsoon and the complex control factors (Fig. 10c), however, the 409 

summer precipitation in the east of CA is weaker than that of MH (Fig. 9e), which is 410 

consistent with the dry/wet status in EA and reflects the linkage between EA and the 411 

east of CA caused by the summer precipitation regime. Although the westerlies weaken 412 

in the LGM winter (Fig. 10b), the higher winter insolation contributes to the general 413 

warming in CA and EA (Fig. 8k; 9b), resulting in lower relative humidity (Fig. 9d). 414 

According to climatological theory (Barry and Richard, 2009), the decrease in relative 415 

humidity means the increase in saturated water vapor pressure, which ultimately leads 416 

to the increasing precipitation (Fig. 9f). Therefore, this elaborates the asynchrony of the 417 

long-term dry/wet status in EA and CA under the control of seasonal signals. 418 

 419 

Figure. 9 Summer differences of temperature (tem) (a), sea level pressure (psl) (c), precipitation (pre) (e), 700 hPa 420 

wind field (g), and 200 hPa wind field (h) for LGM-MH; and winter differences of temperature (b), relatively humid 421 
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(hus) (d), precipitation (f), and 200 hPa wind field (i) for LGM-MH in EA and CA based on the PMIP3-CMIP5 422 

multi-model ensemble. 423 

Investigating the past climate is key to informing future climate change (Tierney 424 

et al., 2020). From the perspective of paleoclimatology, monsoon and westerlies vary 425 

greatly between LGM and MH, modulated by primary forces such as orbital insolation, 426 

greenhouse gas, and ice sheets (Oster et al., 2015; Bereiter et al., 2015; Sime et al., 427 

2016). Paleoclimate records clearly indicate the wet status during the LGM and LH in 428 

CA and the MH wet in EA (Fig. 8). Specifically, the dry/wet status in CA, affected by 429 

the westerlies and characterized by wet climate conditions during the LGM and mid- 430 

and late-Holocene, is opposite to that in monsoon-dominated EA. However, the proxy 431 

records in CA similar to the monsoon evolution are located in the modern summer 432 

precipitation region. From the perspective of precipitation seasonality, there are two 433 

different precipitation regimes within CA. The core region of CA has a Mediterranean 434 

climate (winter precipitation regime), with a dry summer and with seasonal 435 

precipitation from early winter to late spring (Fig. 1); whereas, in the east of CA, 436 

including northwest of China and west and south of Mongolia, the summer precipitation 437 

contributes more (summer precipitation regime; Fig. 1). Therefore, summer 438 

precipitation regime may be a potential forcing factor for the linkage of paleoclimate 439 

reconstruction between EA and the east of CA, and the difference in precipitation 440 

regime may result in a divergent moisture history in EA and the core region of CA.  441 

https://doi.org/10.5194/cp-2023-71
Preprint. Discussion started: 15 September 2023
c© Author(s) 2023. CC BY 4.0 License.



30 

 

 442 

Figure. 10 Summer differences of 200 hPa wind field (a) and 700 hPa wind field (c) for LGM-MH; and winter 443 

differences of 200 hPa wind field (b) and 700 hPa wind field (d) for LGM-MH in EA and CA based on the PMIP3-444 

CMIP5 multi-model ensemble. 445 

As a whole, our results provide a hypothesis that seasonal signals of precipitation 446 

derived from the simultaneity of rain and heat periods govern the difference and linkage 447 

in dry/wet status from EA and CA at multi-time scales. With recent global warming, 448 

some recent work also points out increasing summer precipitation in arid CA (Chen et 449 

al., 2021a; Ren et al., 2022). Meanwhile, the phenomenon of warmer and wetter 450 

climates coincides with the simultaneity of rain and heat periods (Hu and Han, 2022). 451 

Future work should focus on the fusion of multiple datasets and high-precision climate 452 

simulation designed to evaluate the mechanism. 453 

 454 

5. Conclusion 455 

The summer precipitation regime in EA and the east of CA and the winter 456 

precipitation regime in the core region of CA reveal seasonal signals of precipitation. 457 

Using the EOF method, this study analyzes the spatiotemporal variations of 458 

precipitation in EA and CA. Results reveal that seasonal signals derived from the 459 
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simultaneity of rain and heat periods are important factors linking climate change 460 

modes in EA and CA at short-term timescales. A compilation of 42 proxy records with 461 

reliable chronologies enables us to reassess the dry/wet status in EA and CA since the 462 

LGM. Concurrently, paleoclimate records reflect seasonal signals triggered by the 463 

insolation at long-term timescales. The multi-model simulations of multiple climatic 464 

elements explain the climate mechanism of differences and linkage in dry/wet status 465 

from EA and CA. In the traditional context of asynchronous dry/wet status between 466 

summer precipitation regions and winter precipitation regions, we believe that regional 467 

linkages also exist in EA and CA affected by seasonal signals. 468 
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